CS106A Handout #12S
Winter 2015 January 26, 2015

Section Solutions 3

Based on a handout by Eric Roberts, Mehran Sahami, and Patrick Young

Problem One: True or False?
For each of the following statements below, indicate whether it is true or false in Java:

1. The value of a local variable named i has no direct relationship with that of a variable
named i in its caller. True

Local variables in different methods have no direct relationships. Changing one does not
necessarily change any other.

2. The value of a parameter named x has no direct relationship with that of a variable named x
in its caller. True

The initial value of the parameter x depends on what value was specified by the calling
method, which doesn't necessarily have anything to do with a local variable x in the caller.

Problem Two: Method Trace

The output of QuestionableJava. java is given here:

marten = 137
marten = 42
marten = 137
faye = 42
dora = 137
marten = 7
dora = 35
marten = 5

Problem Three: Retirement Strategies

import acm.program.*;

public class RetirementPlanning extends ConsoleProgram {
/* The average annual return on investment as given by the S&P 500 index. */
private static final double RETURN_RATE = 1.075;

public void run() {
int retirementYear
int startYear
int savingsAmount

readInt("What year do you plan to retire? ");
readInt("What year do you plan to start saving? ");
readInt("How much per year do you plan to save? $");

double totalSavings = 0.0;

/* Iterate from the start year up to the retirement year. */
for (int year = startYear; year < retirementYear; year++) {
totalSavings += savingsAmount;
totalSavings *= RETURN_RATE;

}

/* Cast the total savings to an int to ignore cents; we don't really need
* them.

*/

println("In " + retirementYear + ", you'd have around $" +

(int)totalSavings);

Problem Four: A Coin-Flipping Game

import acm.program.*;
import acm.util.*; // For RandomGenerator

public class CoinFlippingGame extends ConsoleProgram{
public void run() {

int plCoins = readInt("How many coins for P1? ");

int p2Coins = readInt("How many coins for P2? ");

/* There's a fencepost issue here - we need to print the coin totals before
* entering the while loop.
*/

printCoinCounts(plCoins, p2Coins);

while (plCoins > 0 && p2Coins > 0) {
RandomGenerator rgen = RandomGenerator.getInstance();

/* Flip for player one. */
if (rgen.nextBoolean()) {
plCoins--;
p2Coins++;

}

printCoinCounts(plCoins, p2Coins);

/* We may need to stop early because player one may have run out of
* coins. If so, we break out of the loop here.
*/

if (plCoins <= 0) break;

/* Flip for player two. */
if (rgen.nextBoolean()) {
plCoins++;
p2Coins--;
}

printCoinCounts(plCoins, p2Coins);

}

/* Display who won. */
printEndResult (plCoins, p2Coins);
}

/**
* Prints out the coin counts for each player.
*
* @param plCoins The number of coins player one has.
* @param p2Coins The number of coins player two has.
*/
private void printCoinCounts(int plCoins, int p2Coins) {
println("P1l: " + plCoins + " P2: " + p2Coins);
}

/* continued on the next page */

/**

* Given the final coin counts, displays who won!
*
* @param plCoins The number of coins player one has.
* @param p2Coins The number of coins player two has.
*/
private void printEndResult(int plCoins, int p2Coins) {
if (plCoins > 0) {
println("P1 Wins!");
} else if (p2Coins > 0) {
println("P2 Wins!");
} else {
println("Bad times - everyone loses!");
}

}

Problem Five: Sunset

import acm.program.*;
import acm.graphics.*;
import java.awt.*;

public class Sunset extends GraphicsProgram {
/* The radius of the sun. */
private static final double SUN_RADIUS = 75;

/* The height of the horizon. */
private static final double HORIZON_HEIGHT = 100;

/* The sun's setting velocity. */
private static final double SUNSET_VELOCITY = 1.0;

/* How much time to pause between frames. */
private static final double PAUSE TIME = 40;

public void run() {
/* Color the window cyan to simulate the sky. */
setBackground(Color.CYAN);

/* Create the sun and horizon. */
GOval sun = makeSun();
GRect horizon = makeHorizon();

/* Add the sun, then the horizon, so that the sun can
* set behind it.
*/

add(sun);

add(horizon);

performSunset(sun);

}

/**
* Creates and returns an oval representing the sun.
*
* @return A GOval representing the sun.
*/
private GOval makeSun() {
/* Center the GOval in the window. */
GOval result = new GOval((getWidth() - 2 * SUN_RADIUS) / 2.0,
(getHeight() - 2 * SUN_RADIUS) / 2.0,
2 * SUN_RADIUS, 2 * SUN_RADIUS);

result.setFilled(true);

result.setColor(Color.YELLOW);
return result;

/* continued on the next page */

/**
* Creates and returns a rectangle representing the horizon.
*
* @return A GRect representing the horizon.
*/
private GRect makeHorizon() {
/* The horizon should horizontally fill the window and
* should have height HORIZON HEIGHT. It will be
* aligned to the bottom of the window.
*/
GRect result = new GRect (0, getHeight() - HORIZON_HEIGHT,
getWidth(), HORIZON_HEIGHT);

result.setColor(Color.GREEN);
result.setFilled(true);
return result;

}

/**
* Simulates a sunset.
*
* @param sun The object representing the sun.
*/
private void performSunset(GOval sun) {
/* Keep moving the sun downward until it has set. */
while ('hasSunSet(sun)) {
sun.move (0@, SUNSET VELOCITY);
pause (PAUSE_TIME) ;

/* TODO: Change the sun color, the sky color, or the
* horizon color if you'd like!
*/
}
}

/**
* Given the sun, determine whether or not it has set.
*
* @param sun The object representing the sun.
* @return Whether the sun has set.
*/
private boolean hasSunSet(GOval sun) {
/* The sun has set as soon as its top is below the
* horizon.
*/
return sun.getY() > getHeight() - HORIZON_HEIGHT;
}
}

